Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.934
1.
Water Res ; 256: 121638, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38691899

In this study, we investigated the recovery of nitrogen (N) and phosphorus (P) from fresh source-separated urine with a novel electrochemical cell equipped with a magnesium (Mg) anode and carbon-based gas-diffusion cathode. Recovery of P, which exists primarily as phosphate (PO43-) in urine, was achieved through pH-driven precipitation. Maximizing N recovery requires simultaneous approaches to address urea and ammonia (NH3). NH3 recovery was possible through precipitation in struvite with soluble Mg supplied by the anode. Urea was stabilized with electrochemically synthesized hydrogen peroxide (H2O2) from the cathode. H2O2 concentrations and resulting urine pH were directly proportional to the applied current density. Concomitant NH3 and PO43- precipitation as struvite and urea stabilization via H2O2 electrosynthesis was possible at lower current densities, resulting in urine pH under 9.2. Higher current densities resulted in urine pH over 9.2, yielding higher H2O2 concentrations and more consistent stabilization of urea at the expense of NH3 recovery as struvite; PO43- precipitation still occurred but in the form of calcium phosphate and magnesium phosphate solids.


Electrodes , Hydrogen Peroxide , Magnesium , Phosphorus , Urea , Urea/chemistry , Phosphorus/chemistry , Magnesium/chemistry , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Urine/chemistry , Phosphates/chemistry , Struvite/chemistry , Ammonia/chemistry , Magnesium Compounds/chemistry , Nitrogen/chemistry , Humans
2.
Soft Matter ; 20(18): 3780-3786, 2024 May 08.
Article En | MEDLINE | ID: mdl-38639061

Acylphosphatase (AcP) is an enzyme which catalyses the hydrolysis of acylphosphate. The binding with the phosphate ion (Pi) assumes significance in preserving both the stability and enzymatic activity of AcP. While previous studies using single molecule force spectroscopy explored the mechanical properties of AcP, the influence of Pi on its folding and unfolding dynamic behaviors remains unexplored. In this work, using stable magnetic tweezers, we measured and compared the force-dependent folding and unfolding rates of AcP in the Tris buffer and phosphate buffer within a force range from 2 pN to 40 pN. We found that Pi exerts no discernible effect on the folding dynamics but consistently decreases the force-dependent unfolding rate of AcP by a constant ratio across the entire force spectrum. The free energy landscapes of AcP in the absence and presence of Pi are constructed. Our results reveal that Pi selectively binds to the native state of AcP, stabilizing it and suggesting the general properties of specific ligand-receptor interactions.


Acylphosphatase , Protein Folding , Protein Unfolding , Thermodynamics , Ligands , Phosphates/chemistry , Phosphates/metabolism
3.
Bioresour Technol ; 401: 130711, 2024 Jun.
Article En | MEDLINE | ID: mdl-38641302

Lithium carboxymethyl cellulose (CMC-Li) is a promising novel water-based binder for lithium-ion batteries. The direct synthesis of CMC-Li was innovatively developed using abundant wood dissolving pulp materials from hardwood (HW) and softwood (SW). The resulting CMC-Li-HW and CMC-Li-SW binders possessed a suitable degree of substitutions and excellent molecular weight distributions with an appropriate quantity of long- and short-chain celluloses, which facilitated the construction of a reinforced concrete-like bonding system. When used as cathode binders in LiFePO4 batteries, they uniformly coated and dispersed the electrode materials, formed a compact and stable conductive network with high mechanical strength and showed sufficient lithium replenishment. The prepared LiFePO4 batteries exhibited good mechanical stability, low charge transfer impedance, high initial discharge capacity (∼180 mAh/g), high initial Coulombic efficiency (99 %), excellent cycling performance (<3% loss over 200 cycles) and good rate capability, thereby outperforming CMC-Na and the widely used cathode binder polyvinylidene fluoride.


Carboxymethylcellulose Sodium , Electric Power Supplies , Electrodes , Lithium , Wood , Lithium/chemistry , Wood/chemistry , Carboxymethylcellulose Sodium/chemistry , Phosphates/chemistry , Ions , Iron
4.
J Colloid Interface Sci ; 667: 32-43, 2024 Aug.
Article En | MEDLINE | ID: mdl-38615621

It has been a challenge to prepared polyether block amide (PEBA) fibrous membrane via solution electrospinning. The only few reported methods though involved hazardous solvents and surfactants which were against the principle of green chemistry. In this work, uniform fibrous membrane of PEBA was successfully fabricated by solution electrospinning with a bio-based solvent dihydrolevoglucosenone (Cyrene). To further improve the mechanical strength and adsorption performance of the PEBA membrane, a hierarchical magnesium hydrogen phosphate (MgHPO4·1.2H2O, MHP) was synthesized to blend evenly into the PEBA matrix. A Janus MHP/PEBA membrane with one side of hydrophobic surface and the other side of hydrophilic surface was subsequently prepared, which exhibited fast adsorption, high capacity, good selectivity and reusability towards ibuprofen, acetaminophen, carbamazepine and triclosan. In addition, the Janus membrane showed high removal efficiency of the above contaminants in secondary wastewater effluent with good long term stability. It demonstrated that this Janus MHP/PEBA membrane had a good potential in practical wastewater treatment.


Membranes, Artificial , Green Chemistry Technology , Adsorption , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/chemistry , Phosphates/chemistry , Phosphates/isolation & purification , Polymers/chemistry , Surface Properties , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/isolation & purification , Amides/chemistry , Amides/isolation & purification , Particle Size , Water Purification/methods , Cosmetics/chemistry , Cosmetics/isolation & purification
5.
Int J Biol Macromol ; 267(Pt 2): 131412, 2024 May.
Article En | MEDLINE | ID: mdl-38593894

The synthesis of ideal bioceramics to guide the fate of cells and subsequent bone regeneration within the chemical, biological, and physical microenvironment is a challenging long-term task. This study developed amorphous calcium magnesium phosphate (ACMP) bioceramics via a simple co-precipitation method. The role of Mg2+ in the formation of ACMP is investigated using physicochemical and biological characterization at different Ca/Mg molar ratio of the initial reaction solution. Additionally, ACMP bioceramics show superior cytocompatibility and improved osteogenic differentiation of co-cultured MC3T3-E1 cells. Regulation of the microenvironment with Mg2+ can promote early-stage bone regeneration. For this, bioprinting technology is employed to prepare ACMP-modified 3D porous structures. Our hypothesis is that the incorporation of ACMP into methacrylated gelatin (GelMA) bioink can trigger the osteogenic differentiation of encapsulated preosteoblast and stimulate bone regeneration. The cell-laden ACMP composite structures display stable printability and superior cell viability and cell proliferation. Also, constructs loading the appropriate amount of ACMP bioceramic showed significant osteogenic differentiation activity compared to the pure GelMA. We demonstrate that the dissolved Mg2+ cation microenvironment in ACMP-modified composite constructs plays an effective biochemical role, and can regulate cell fate. Our results predict that GelMA/ACMP bioink has significant potential in patient-specific bone tissue regeneration.


Bioprinting , Bone Regeneration , Calcium Phosphates , Cell Differentiation , Osteogenesis , Printing, Three-Dimensional , Tissue Scaffolds , Bone Regeneration/drug effects , Mice , Animals , Osteogenesis/drug effects , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Cell Differentiation/drug effects , Bioprinting/methods , Tissue Scaffolds/chemistry , Cell Proliferation/drug effects , Magnesium Compounds/chemistry , Magnesium Compounds/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Survival/drug effects , Cell Line , Tissue Engineering/methods , Osteoblasts/drug effects , Osteoblasts/cytology , Phosphates/chemistry , Phosphates/pharmacology
6.
Metallomics ; 16(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38599629

Taking into account that in recent decades there has been an increase in the incidence of urinary stones, especially in highly developed countries, from a wide range of potentially harmful substances commonly available in such countries, we chose zinc for the research presented in this article, which is classified by some sources as a heavy metal. In this article, we present the results of research on the influence of Zn2+ ion on the nucleation and growth of struvite crystals-the main component of infection urinary stones. The tests were carried out in an artificial urine environment with and without the presence of Proteus mirabilis bacteria. In the latter case, the activity of bacterial urease was simulated chemically, by systematic addition of an aqueous ammonia solution. The obtained results indicate that Zn2+ ions compete with Mg2+ ions, which leads to the gradual replacement of Mg2+ ions in the struvite crystal lattice with Zn2+ ions to some extent. This means co-precipitation of Mg-struvite (MgNH4PO4·6H2O) and Znx-struvite (Mg1-xZnxNH4PO4·6H2O). Speciation analysis of chemical complexes showed that Znx-struvite precipitates at slightly lower pH values than Mg-struvite. This means that Zn2+ ions shift the nucleation point of crystalline solids towards a lower pH. Additionally, the conducted research shows that Zn2+ ions, in the range of tested concentrations, do not have a toxic effect on bacteria; on the contrary, it has a positive effect on cellular metabolism, enabling bacteria to develop better. It means that Zn2+ ions in artificial urine, in vitro, slightly increase the risk of developing infection urinary stones.


Proteus mirabilis , Struvite , Urinary Calculi , Zinc , Struvite/chemistry , Zinc/metabolism , Zinc/chemistry , Urinary Calculi/chemistry , Urinary Calculi/metabolism , Urinary Calculi/microbiology , Proteus mirabilis/metabolism , Humans , Phosphates/metabolism , Phosphates/chemistry , Ions , Magnesium Compounds/metabolism , Magnesium Compounds/chemistry , Crystallization
7.
J Hazard Mater ; 470: 134198, 2024 May 15.
Article En | MEDLINE | ID: mdl-38608582

A novel Ag3PO4/ZnWO4-modified graphite felt electrode (AZW@GF) was prepared by drop coating method and applied to photoelectrocatalytic removal of harmful algae. Results showed that approximately 99.21% of chlorophyll a and 91.57% of Microcystin-LR (MCLR) were degraded by the AZW@GF-Pt photoelectrocatalytic system under the optimal operating conditions with a rate constant of 0.02617 min-1 and 0.01416 min-1, respectively. The calculated synergistic coefficient of photoelectrocatalytic algal removal and MC-LR degradation by the AZW@GF-Pt system was both larger than 1.9. In addition, the experiments of quenching experiments and electron spin resonance (ESR) revealed that the photoelectrocatalytic reaction mainly generated •OH and •O2- for algal removal and MC-LR degradation. Furthermore, the potential pathway for photoelectrocatalytic degradation of MC-LR was proposed. Finally, the photoelectrocatalytic cycle algae removal experiments were carried out on AZW@GF electrode, which was found to maintain the algae removal efficiency at about 91% after three cycles of use, indicating that the photoelectrocatalysis of AZW@GF electrode is an effective emergency algae removal technology.


Electrodes , Graphite , Marine Toxins , Microcystins , Silver Compounds , Graphite/chemistry , Graphite/radiation effects , Microcystins/chemistry , Microcystins/isolation & purification , Catalysis , Silver Compounds/chemistry , Phosphates/chemistry , Oxides/chemistry , Electrochemical Techniques , Tungsten/chemistry , Chlorophyll A/chemistry , Zinc/chemistry , Water Purification/methods , Chlorophyll/chemistry , Photochemical Processes , Harmful Algal Bloom
8.
Luminescence ; 39(5): e4751, 2024 May.
Article En | MEDLINE | ID: mdl-38666358

This study describes the luminous properties of Pb5(PO4)3Br doped with RE3+ (RE = Dy3+, Eu3+ and Tb3+) synthesised using the solid-state method. The synthesised phosphor was characterised using Fourier-transform infrared, X-ray diffraction, scanning electron microscopy and photoluminescence measurements. Dy3+-doped Pb5(PO4)3Br phosphor exhibited blue and yellow emissions at 480 and 573 nm, respectively, on excitation at 388 nm. Eu3+-doped Pb5(PO4)3Br phosphor exhibited orange and red emissions at 591 and 614 nm, respectively, on excitation at λex = 396 nm. Pb5(PO4)3Br:Tb3+ phosphor exhibited the strongest green emission at 547 nm on excitation at λex = 380 nm. Additionally, the effect of the concentration of rare-earth ions on the emission intensity of Pb5(PO4)3Br:RE3+ (RE3+ = Dy3+, Eu3+ and Tb3+) phosphors was investigated.


Europium , Luminescence , Luminescent Agents , Europium/chemistry , Luminescent Agents/chemistry , Luminescent Agents/chemical synthesis , Terbium/chemistry , Phosphates/chemistry , Luminescent Measurements , X-Ray Diffraction , Lead/chemistry
9.
Waste Manag ; 181: 44-56, 2024 May 30.
Article En | MEDLINE | ID: mdl-38583272

Phosphate tailings (PT) was used to reduce the release of heavy metals (HMs) during pyrolysis and the leachable rate of residual HMs, and simultaneously improve the bioavailability of phosphorus in the sludge-based biochar. The concentration of heavy metals and the fractions determined by BCR method was used to investigate the release and the transformation of Zn, Pb, Mn, Ni and Cu during pyrolysis involved with the effects of temperature and the addition of PT. The respective pyrolysis experiments shows that the release of Zn and Pb increases with temperature for both sewage sludge (SS) and PT, and the bioavailable fractions (F1 + F2) of Mn, Ni, and Cu increases with temperature for PT. During co-pyrolysis, blended samples released lower quantities of Zn and Pb and presented lower bioavailability of HMs than the individual SS or PT. A synergistic effect of co-pyrolysis was evident for volatile Zn and Pb. The decomposition of CaMg (CO3)2 from PT produced CaO, by which the volatile ZnCl2 and PbCl2 were transformed into ZnO and PbO with less volatility and higher reactivity with SiO2 and Al2O3 than the chlorides. Then SiO2 and Al2O3 from SS acted as the final stabilizer to immobilize the oxides. The final product combined with SiO2 and Al2O3, such as ZnSiO4 and ZnAl2O4, were detected. The addition of PT also introduced more Ca and P into sludge to produce biochar with higher concentration of apatite phosphorus with higher bioavailability.


Metals, Heavy , Phosphates , Phosphorus , Pyrolysis , Sewage , Sewage/chemistry , Metals, Heavy/chemistry , Metals, Heavy/analysis , Phosphorus/chemistry , Phosphates/chemistry , Charcoal/chemistry
10.
Waste Manag ; 181: 168-175, 2024 May 30.
Article En | MEDLINE | ID: mdl-38615500

The recovery of valuable metals from used lithium batteries is essential from an environmental and resource management standpoint. However, the most widely used acid leaching method causes significant ecological harm. Here, we proposed a method of recovering Li and Fe selectively from used lithium iron phosphate batteries by using low-concentration organic acid and completing the closed-loop regeneration. Low-concentration oxalic acid is used to carry out PO43-, which is significantly less soluble in aqueous solution than Li, two-stage selective leaching Li, where the leaching rate of Li reaches 99 %, and the leaching rate of Fe is only 2.4 %. The leach solution is then decontaminated. The solubility of Li3PO4 in aqueous solution is much smaller than that of Li2C2O4, which was required to recover Li to change the pH and Li can be recovered as Li3PO4; Fe can be retrieved as FeC2O4·2H2O, and re-prepared into lithium iron phosphate.


Ferric Compounds , Lithium , Oxalic Acid , Phosphates , Recycling , Oxalic Acid/chemistry , Phosphates/chemistry , Lithium/chemistry , Recycling/methods , Iron/chemistry , Electric Power Supplies
11.
J Phys Chem Lett ; 15(16): 4351-4358, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38619551

Water molecules are essential to determine the structure of nucleic acids and mediate their interactions with other biomolecules. Here, we characterize the hydration dynamics of analogous DNA and RNA double helices with unprecedented resolution and elucidate the molecular origin of their differences: first, the localization of the slowest hydration water molecules─in the minor groove in DNA, next to phosphates in RNA─and second, the markedly distinct hydration dynamics of the two phosphate oxygen atoms OR and OS in RNA. Using our Extended Jump Model for water reorientation, we assess the relative importance of previously proposed factors, including the local topography, water bridges, and the presence of ions. We show that the slow hydration dynamics at RNA OR sites is not due to bridging water molecules but is caused by both the larger excluded volume and the stronger initial H-bond next to OR, due to the different phosphate orientations in A-form double helical RNA.


DNA , Hydrogen Bonding , Nucleic Acid Conformation , RNA , Water , DNA/chemistry , RNA/chemistry , Water/chemistry , Phosphates/chemistry , Molecular Dynamics Simulation
12.
J Hazard Mater ; 470: 134306, 2024 May 15.
Article En | MEDLINE | ID: mdl-38626684

Soil cadmium (Cd) is immobilized by the progressing biomineralization process as microbial induced phosphate precipitation (MIPP), which is regulated by phosphate (P) solubilizing microorganisms and P sources. However, little attention has been paid to the implications of Cd biosorption during MIPP. In this study, the newly isolated Penicillium oxalicum could immobilize 5.4-12.6 % of Cd2+, while the presence of hydroxyapatite (HAP) considerably enhanced Cd2+ immobilization in P. oxalicum and reached over 99 % Cd2+ immobilization efficiency within 7 days. Compared to P. oxalicum mono inoculation, MIPP dramatically boosted Cd biosorption and biomineralization efficiency by 71 % and 16 % after 96 h cultivation, respectively. P. oxalicum preferred to absorbing Cd2+ and reaching maximum Cd2+ biosorption efficiency of 87.8 % in the presence of HAP. More surface groups in P. oxalicum and HAP mineral involved adsorption which resulted in the formation of Cd-apatite [Ca8Cd2(PO4)6(OH)2] via ion exchange. Intracellular S2-, secreted organic acids and soluble P via HAP solubilization complexed with Cd2+, progressively mineralized into Cd5(PO4)3OH, Cd(H2PO4)2, C4H6CdO4 and CdS. These results suggested that Cd2+ immobilization was enhanced simultaneously by the accelerated biosorption and biomineralization during P. oxalicum induced P precipitation. Our findings revealed new mechanisms of Cd immobilization in MIPP process and offered clues for remediation practices at metal contaminated sites.


Biomineralization , Cadmium , Penicillium , Phosphates , Penicillium/metabolism , Cadmium/chemistry , Cadmium/metabolism , Phosphates/chemistry , Phosphates/metabolism , Adsorption , Durapatite/chemistry , Soil Pollutants/metabolism , Soil Pollutants/chemistry , Biodegradation, Environmental , Chemical Precipitation
13.
PLoS One ; 19(4): e0301986, 2024.
Article En | MEDLINE | ID: mdl-38626158

The production of sludge-based biochar to recover phosphorus (P) from wastewater and reuse the recovered phosphorus as agricultural fertilizer is a preferred process. This article mainly studied the removal of phosphate (PO4-P) from aqueous solution by synthesizing sludge-based biochar (MgSBC-0.1) from anaerobic fermentation sludge treated with magnesium (Mg)-loading-modification, and compared it with unmodified sludge-based biochar (SBC). The physicochemical properties, adsorption efficiency, and adsorption mechanism of MgSBC-0.1 were studied. The results showed that the surface area of MgSBC-0.1 synthesized increased by 5.57 times. The material surface contained MgO, Mg(OH)2, and CaO nanoparticles. MgSBC-0.1 can effectively remove phosphate in the initial solution pH range of 3.00-7.00, with a fitted maximum phosphorus adsorption capacity of 379.52 mg·g-1. The adsorption conforms to the pseudo second-order kinetics model and Langmuir isotherm adsorption curve. The characterization of the adsorbed composite material revealed the contribution of phosphorus crystal deposition and electrostatic attraction to phosphorus absorption.


Phosphates , Water Pollutants, Chemical , Phosphates/chemistry , Magnesium , Sewage , Adsorption , Charcoal , Phosphorus/chemistry , Kinetics , Water Pollutants, Chemical/analysis
14.
J Mol Model ; 30(5): 151, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38668860

CONTEXT: The controlled slow evaporation process conducted at room temperature has produced a novel hybrid material denoted as (2-hydroxyethyl) trimethylammonium dihydrogen phosphate [2-HDETDHP] (C5H14NO+, H2PO4-), synthesized through the solution growth method. X-ray crystallography analysis reveals a triclinic structure with a filling rate of P and a Z value of 2. This hybrid material displays noteworthy absorption characteristics in the middle and far ultraviolet regions. UV-visible spectroscopy further establishes its transparency in the visible and near-visible ultraviolet domains. FT-IR spectroscopy examines various vibration modes, elucidating their relationships with the functional groups within the structure. Two- and three-dimensional fingerprint maps, coupled with three-dimensional crystal structures through Hirshfeld Surface Analysis, unveil the dominance of O•••H and H•••H interactions in the structure, comprising 49.40% and 50.40%, respectively. Fingerprint plots derived from the Hirshfeld surface assess the percentages of hydrogen bonding interactions, with 80.6% attributed to a fragment patch. The experiment of antimicrobial efficacy of a synthesized product, conducted in triplicate, demonstrated the synthesized product's potential antimicrobial activity. METHODS: Hirshfeld surfaces are employed to investigate intermolecular hydrogen bonding, specifically within single phosphate groups. The molecular structure of 2-HDETDHP was refined using single-crystal X-ray analysis, while its optical characteristics were examined through UV-visible spectroscopy. FT-IR spectroscopy is employed for the assignment of molecular vibrations of functional groups in the affined structure. Quantum calculations were executed with the GAUSSIAN 09 software package at B3LYP/6-311G level of theory, to optimize the molecular geometries. The antimicrobial efficacy of a synthesized product was evaluated using the disc diffusion method against antibiotic-resistant Candida albicans, Candida tropicalis, Aspergillus niger, Staphylococcus aureus, and Escherichia coli. Microorganisms were cultured on nutrient agar, and inhibition zones were measured after incubation, with streptomycin and amphotericin as positive controls.


Phosphates , Phosphates/chemistry , Hydrogen Bonding , Models, Molecular , Spectroscopy, Fourier Transform Infrared , Microbial Sensitivity Tests , Crystallography, X-Ray , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Candida albicans/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis
15.
J Environ Manage ; 358: 120950, 2024 May.
Article En | MEDLINE | ID: mdl-38657414

In this work, waste plastics have been used with bentonite clay to produce silica-containing graphene nanosheets (GNs) for adsorption of nitrate and phosphate from synthetic water. The GNs were obtained by the two steps process, namely (1) pyrolysis at 750 °C and (2) ball milling. Then, GNs were characterized by Raman spectroscopy, FTIR, XRD, FESEM, HRTEM and EDX spectroscopy, which provided the details of material's morphology, surface properties, and composition. From Raman spectroscopy, D and G bands were found at 1342 cm-1 and 1594 cm-1, respectively, which confirmed the presence of nanosheets on the graphene surface. Furthermore, the layers of nanosheets were confirmed by the HRTEM analysis and XRD peaks. In analytical study, the batch experiment was conducted to investigate the influence of operational parameters such as pH (03-12), contact time (05-120 min), adsorbent dosage (0.01-0.06 g), and initial concentrations of adsorbates (10-50 mg/L for nitrate and 03-15 mg/L for phosphate) on adsorption process. The removal percentage of nitrate and phosphate at optimum dosage = 0.05 g, pH = 6.5, contact time = 60 min, nitrate concentration = 30 mg/L, and phosphate concentration = 09 mg/L were found to be 85 and 91, respectively. The highest adsorption capacity of nitrate and phosphate was found to be 53 mg/g and 16.4 mg/g, respectively. The adsorption behaviour of both nitrate and phosphate showed chemisorption as the experimental data were well fitted by the pseudo-2nd-order kinetic and Langmuir isotherm model. Life cycle cost analysis (LCCA) of the synthesis process was conducted to evaluate the cost-benefit analysis for commercial feasibility. The estimated price for the synthesis of GNs using 1 kg of waste plastics and bentonite clay as precursor was $4.21, suggesting commercialization.


Graphite , Nitrates , Phosphates , Plastics , Graphite/chemistry , Phosphates/chemistry , Nitrates/chemistry , Adsorption , Plastics/chemistry , Water Pollutants, Chemical/chemistry , Bentonite/chemistry , Nanostructures/chemistry
16.
J Environ Manage ; 358: 120866, 2024 May.
Article En | MEDLINE | ID: mdl-38663085

Cu (II) is a toxic heavy metal commonly identified in groundwater contaminants. Bentonite-based cutoff wall is the most used method in isolating and adsorbing contaminants, while the bentonite in it easily to fail due to Cu(II) exchange. This study synthesized a novel material through the modification of calcium bentonite (CaB) utilizing sodium hexametaphosphate (SHMP) and nano zero-valent iron (NZVI). The characteristics, adsorption performance, and mechanism of the NZVI/SHMP-CaB were investigated comprehensively. The results showed that SHMP can disperse CaB and reduce flocculation, while NZVI can be further stabilized without agglomeration. The best adsorption performance of NZVI/SHMP-CaB could be obtained at the dosage of 2% SHMP and 4% NZVI. The NZVI/SHMP-CaB exhibited an outstanding removal efficiency of over 60% and 90% at a high Cu(II) concentration (pH = 6, Cu(II) = 300 mg/L) and acidic conditions (pH = 3-6, Cu(II) = 50 mg/L), respectively. The adsorption of Cu(II) by NZVI/SHMP-CaB followed a pseudo-second-order kinetic model, and fitting results from the Freundlich isothermal model suggested that the adsorption process occurred spontaneously. Besides the rapid surface adsorption on the NZVI/SHMP-CaB and ion exchange with interlayer ions in bentonite, the removal mechanism of Cu(II) also involved the chemical reduction to insoluble forms such as Cu0 and Cu2O. The generated FePO4 covered the surface of the homogenized NZVI particles, enhancing the resistance of NZVI/SHMP-CaB to acidic and oxidative environments. This study indicates that NZVI/SHMP-CaB is a promising alternative material which can be used for heavy metal removal from contaminated soil and water.


Bentonite , Copper , Iron , Phosphates , Bentonite/chemistry , Adsorption , Iron/chemistry , Copper/chemistry , Phosphates/chemistry , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
17.
J Environ Manage ; 358: 120833, 2024 May.
Article En | MEDLINE | ID: mdl-38599090

Phosphate holds a critical role as a vital, limited, strategic, and irreplaceable resource. Throughout its production chain, residual phosphate can be found in waste streams. This study aims to enhance production efficiency by exploring methods to limit residual phosphate presence in waste stocks. It investigates the presence of residual phosphate in a phosphate mining site. The presence of residual phosphate throughout the production chain is investigated. Through meticulous analyses of extraction, destoning, and screening processes, the study identifies three primary stages where residual phosphate exists, the study simulates different scenarios of residual phosphate recovery and prevention. The principal data sources are data from mining site, recent literature, and information from a lithological log, the study meticulously analyzes the extraction, crushing, and sieving processes to assess the persistence of residual phosphate. The production chain diagnostic revealed that 76% of resource present is recovered (either integrated into the value chain or stored in the mine for future use), from which 8% goes to the destoning waste rocks (75% of which is residual phosphate) and the screening waste rocks (72% of which is residual phosphate), with an average grade that reaches 25% P2O5. Approximately, 24% of the initial phosphate rock (with an average grade of 22% P2O5) remains as residual phosphate which is retained in the spoil piles. To recover and prevent the presence of residual phosphate, the study proposes four new scenarios for improvement, including an integrated scenario where all the solutions are combined for a comprehensive approach. Both quantity and grade of recovered residual phosphate are assessed in each scenario. To evaluate these enhancements, the study utilizes the AnyLogic software to simulate existing process configuration and the maximal recovery of each scenario. The current flowsheet indicates that extracted phosphate can be directed either to pre-beneficiation and expedition or stored for future use. By prioritizing the extraction of phosphate over the final product, the simulation results suggest that implementing these novel scenarios could potentially save 25% of the total phosphate resource and increase storage by twofold, preserving phosphate that would otherwise be unused. This recovered phosphate can then be destined to various uses, meeting the company's present or future needs. Considering this, the study opts to keep stocks separated based on their grades and avoid mixing new phosphate streams with the final product. The implications of this research extend to sustainable mining practices, with direct ramifications for environmental impact mitigation and the conservation of valuable resources.


Mining , Phosphates , Phosphates/chemistry
18.
Environ Sci Pollut Res Int ; 31(19): 28706-28718, 2024 Apr.
Article En | MEDLINE | ID: mdl-38558336

Developing adsorbent materials with high adsorptive dephosphorization (ADP) is significant for treating phosphate from aqueous solutions and eutrophic water. Herein, the MIL-101(Cr) framework was entrapped ionic liquid (IL) of 1-butyl-3-methylimidazoliumbromide ionic liquid ([C4mem]+[Br]-) using a ship-in-a-bottle approach to obtain novel adsorbents [C4mem]+[Br]-@MIL-101(Cr) contained varied IL contents, namely C4mem@MIL-101. The characterization results revealed that the formed [C4mem]+[Br]- molecules interacted with the MIL-101(Cr) frameworks, enhanced their stability, and offered additional adsorption sites. The batch adsorptions of phosphate showed that the optimized C4mem@MIL-101 adsorbent loaded with ~ 7% IL-based N content had the highest phosphate absorbing capacity of ~ 200 mg/g, outperforming the pristine MIL-101(Cr) and other adsorbents. The ADP efficiency was facilitated in the acidic media, where the phosphate ions of H2PO4- and HPO42- captured onto the C4mem@MIL-101 via several interactions, including electrostatic attraction, H-bonds, and chemical interactions. In the meantime, the coexisting anions diminished the phosphate adsorption because they competed with the pollutants at adsorption sites. Furthermore, phosphate treatment under the continuous fixed-bed conditions showed that 1 g of the polyvinyl alcohol (PVA)-mixed C4mem@MIL-101 pellets purified 25 l of water containing phosphate with a 1 mg/l concentration. The results suggest that the novel [C4mem]+[Br]-@MIL-101(Cr) structure had a high potential for treating phosphate in aqueous solutions.


Ionic Liquids , Metal-Organic Frameworks , Phosphates , Water Pollutants, Chemical , Water Purification , Ionic Liquids/chemistry , Phosphates/chemistry , Adsorption , Metal-Organic Frameworks/chemistry , Water Purification/methods , Water Pollutants, Chemical/chemistry
19.
Environ Sci Pollut Res Int ; 31(20): 29132-29147, 2024 Apr.
Article En | MEDLINE | ID: mdl-38568311

Layered double hydroxides (LDH) hold great promise as phosphate adsorbents; however, the conventional binary LDH exhibits low adsorption rate and adsorption capacity. In this study, Mg and La were chosen as binary metals in the synthesis of Mg-La LDH to enhance phosphate efficient adsorption. Different molar ratios of Mg to La (2:1, 3:1, and 4:1) were investigated to further enhance P adsorption. The best performing Mg-La LDH, with Mg to La ratio is 4:1 (LDH-4), presented a larger adsorption capacity and faster adsorption rate than other Mg-La LDH. The maximum adsorption capacity (87.23 mg/g) and the rapid adsorption rate in the initial 25 min of LDH-4 (70 mg/(g·h)) were at least 1.6 times and 1.8 times higher than the others. The kinetics, isotherms, the effect of initial pH and co-existing anions, and the adsorption-desorption cycle experiment were studied. The batch experiment results proved that the chemisorption progress occurred on the single-layered LDH surface and the optimized LDH exhibited strong anti-interference capability. Furthermore, the structural characteristics and adsorption mechanism were further investigated by SEM, BET, FTIR, XRD, and XPS. The characterization results showed that the different metal ratios could lead to changes in the metal hydroxide layer and the main ions inside. At lower Mg/La ratios, distortion occurred in the hydroxide layer, resulting in lower crystallinity and lower performance. The characterization results also proved that the main mechanisms of phosphate adsorption are electrostatic adsorption, ion exchange, and inner-sphere complexation. The results emphasized that the Mg-La LDH was efficient in phosphate removal and could be successfully used for this purpose.


Hydroxides , Magnesium , Phosphates , Adsorption , Hydroxides/chemistry , Phosphates/chemistry , Magnesium/chemistry , Kinetics , Lanthanum/chemistry , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
20.
Environ Sci Pollut Res Int ; 31(20): 29584-29594, 2024 Apr.
Article En | MEDLINE | ID: mdl-38580876

Phosphate removal from water by lanthanum-modified tobermorite synthesized from fly ash (LTFA) with different lanthanum concentrations was studied. LTFA samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and Brunauer‒Emmett‒Teller specific surface area analysis. The results showed that the LTFA samples were mainly composed of mesoporous tobermorite-11 Å, and LTFA1 with a lanthanum concentration of 0.15 M had a high specific surface area (83.82 m2/g) and pore volume (0.6778 cm3/g). The phosphate adsorption capacities of LTFA samples were highest at pH 3 and gradually decreased with increasing pH. The phosphate adsorption kinetics data on LTFA samples were most accurately described by the Elovich model. The adsorption isotherms were in the strongest agreement with the Temkin model, and LTFA1 showed the highest phosphate adsorption capacity (282.51 mg P/g), which was higher than that of most other lanthanum-modified adsorbents. LTFA1 presented highly selective adsorption of phosphate with other coexisting ions (HCO3-, Cl-, SO42-, and NO3-). In addition, phosphate was adsorbed onto LTFA samples by forming inner-sphere phosphate complexes and amorphous lanthanum phosphate. This study provides technical support for development of efficient fly ash-based phosphate adsorbents.


Coal Ash , Lanthanum , Phosphates , Lanthanum/chemistry , Coal Ash/chemistry , Phosphates/chemistry , Adsorption , Kinetics , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/chemistry
...